
NAG C Library Function Document

nag_pde_parab_1d_keller_ode (d03pkc)

1 Purpose

nag_pde_parab_1d_keller_ode (d03pkc) integrates a system of linear or nonlinear, first-order, time-
dependent partial differential equations (PDEs) in one space variable, with scope for coupled ordinary
differential equations (ODEs). The spatial discretization is performed using the Keller box scheme and the
method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved
using a Backward Differentiation Formula (BDF) method or a Theta method (switching between Newton’s
method and functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_keller_ode (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ut[], const double ux[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

void (*bndary)(Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm),

double u[], Integer npts, const double x[], Integer nleft, Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double f[], Integer *ires,
Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], double rsave[], Integer lrsave, Integer isave[],
Integer lisave, Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_keller_ode (d03pkc) integrates the system of first-order PDEs and coupled ODEs

Gi x; t;U ;Ux;Ut;V ; _V
� �

¼ 0, i ¼ 1; 2; . . . ;npde, a � x � b; t � t0, ð1Þ

Fi t;V ; _V ; �;U
�;U �

x ;U
�
t

� �
¼ 0, i ¼ 1; 2; . . . ; ncode. ð2Þ

In the PDE part of the problem given by (1), the functions Gi must have the general form

Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
þ

Xncode

j¼1

Qi;j
_V j þ Ri ¼ 0, i ¼ 1; 2; . . . ; npde, ð3Þ

where Pi;j, Qi;j and Ri depend on x; t;U ;Ux and V .

The vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ;Unpde x; tð Þ
h iT

,

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.1

V tð Þ ¼ V 1 tð Þ; . . . ;V ncode tð Þ
h iT

,

and _V denotes its derivative with respect to time.

In the ODE part given by (2), � represents a vector of n� spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U �,
U �

x and U �
t are the functions U , Ux and Ut evaluated at these coupling points. Each Fi may only depend

linearly on time derivatives. Hence equation (2) may be written more precisely as

F ¼ A� B _V � CU �
t , ð4Þ

where F ¼ F1; . . . ;Fncode

h iT
, A is a vector of length ncode, B is an ncode by ncode matrix, C is an

ncode by n� � npde
� �

matrix. The entries in A, B and C may depend on t, �, U�, U�
x and V . In practice

you only need to supply a vector of information to define the ODEs and not the matrices B and C. (See
Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts are

the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts.

The PDE system which is defined by the functions Gi must be specified in the user-supplied function
pdedef.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0.

For a first-order system of PDEs, only one boundary condition is required for each PDE component Ui.
The npde boundary conditions are separated into na at the left-hand boundary x ¼ a, and nb at the right-
hand boundary x ¼ b, such that na þ nb ¼ npde. The position of the boundary condition for each
component should be chosen with care; the general rule is that if the characteristic direction of Ui at the
left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for Ui

should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally
results in initialization or integration difficulties in the underlying time integration functions.

The boundary conditions have the form:

GL
i x; t;U ;Ut;V ; _V
� �

¼ 0 at x ¼ a, i ¼ 1; 2; . . . ; na, ð5Þ

at the left-hand boundary, and

GR
i x; t;U ;Ut;V ; _V
� �

¼ 0 at x ¼ b, i ¼ 1; 2; . . . ; nb, ð6Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme. If the problem involves derivative (Neumann) boundary conditions
then it is generally possible to restate such boundary conditions in terms of permissible variables. Also

note that GL
i and GR

i must be linear with respect to time derivatives, so that the boundary conditions have
the general form:

Xnpde

j¼1

EL
i;j

@Uj

@t
þ

Xncode

j¼1

HL
i;j
_V j þ SLi ¼ 0, i ¼ 1; 2; . . . ; na, ð7Þ

at the left-hand boundary, and

Xnpde

j¼1

ER
i;j

@Uj

@t
þ

Xncode

j¼1

HR
i;j
_V j þ SRi ¼ 0, i ¼ 1; 2; . . . ; nb, ð8Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, H

L
i;j, H

R
i;j, S

L
i and SRi depend on x; t;U and V only.

The boundary conditions must be specified in a function bndary provided by you.

The problem is subject to the following restrictions:

d03pkc NAG C Library Manual

d03pkc.2 [NP3660/8]

(i) Pi;j, Qi;j and Ri must not depend on any time derivatives;

(ii) t0 < tout, so that integration is in the forward direction;

(iii) The evaluation of the function Gi is done approximately at the mid-points of the mesh x½i� 1�, for
i ¼ 1; 2; . . . ; npts, by calling the function pdedef for each mid-point in turn. Any discontinuities in
the function must therefore be at one or more of the mesh points x1; x2; . . . ; xnpts;

(iv) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE
problem.

The algebraic-differential equation system which is defined by the functions Fi must be specified in the
user-supplied function odedef. You must also specify the coupling points � in the array xi.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. In this method of lines approach the Keller box scheme (see Keller (1970)) is applied to each PDE
in the space variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point.
In total there are npde� nptsþ ncode ODEs in time direction. This system is then integrated forwards in
time using a Backward Differentiation Formula (BDF) or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 327–350 Academic Press

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

Constraint: ts < tout.

On exit: the value of t corresponding to the solution in u. Normally ts ¼ tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef – function, supplied by the user External Function

pdedef must evaluate the functions Gi which define the system of PDEs. pdedef is called
approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_keller_ode
(d03pkc).

Its specification is:

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.3

void pdedef (Integer npde, double t, double x, const double u[],
const double ut[], const double ux[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ut½npde� – const double Input

On entry: ut½i� 1� contains the value of the component
@Ui x; tð Þ

@t
, for i ¼ 1; 2; . . . ;npde.

6: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;npde.

7: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

8: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

9: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

10: res½npde� – double Output

On exit: res½i� 1� must contain the ith component of G, for i ¼ 1; 2; . . . ;npde, where G is
defined as

Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
þ

Xncode

j¼1

Qi;j
_V j, ð9Þ

i.e., only terms depending explicitly on time derivatives, or

Gi ¼
Xnpde

j¼1

Pi;j

@Uj

@t
þ

Xncode

j¼1

Qi;j
_V j þ Ri, ð10Þ

i.e., all terms in equation (3).

The definition of G is determined by the input value of ires.

11: ires – Integer * Input/Output

On entry: the form of Gi that must be returned in the array res. If ires ¼ �1, then
equation (9) above must be used. If ires ¼ 1, then equation (10) above must be used.

d03pkc NAG C Library Manual

d03pkc.4 [NP3660/8]

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_keller_ode (d03pkc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

12: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_keller_ode
(d03pkc) these pointers may be allocated memory by the user and initialized with
various quantities for use by pdedef when called from
nag_pde_parab_1d_keller_ode (d03pkc).

5: bndary – function, supplied by the user External Function

bndary must evaluate the functions GL
i and GR

i which describe the boundary conditions, as given in
(5) and (6).

Its specification is:

void bndary (Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0

bndary must compute the left-hand boundary condition at x ¼ a.

ibnd 6¼ 0

bndary must compute the right-hand boundary condition at x ¼ b.

4: nobc – Integer Input

On entry: specifies the number of boundary conditions at the boundary specified by ibnd.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.5

5: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ at the boundary specified
by ibnd, for i ¼ 1; 2; . . . ;npde.

6: ut½npde� – const double Input

On entry: ut½i� 1� contains the value of the component
@Ui x; tð Þ

@t
at the boundary specified

by ibnd, for i ¼ 1; 2; . . . ;npde.

7: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

8: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

9: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

Note: vdot½i� 1�, for i ¼ 1; 2; . . . ; ncode, may only appear linearly as in (7) and (8).

10: res½nobc� – double Output

On exit: res½i� 1� must contain the ith component of GL or GR, depending on the value of

ibnd, for i ¼ 1; 2; . . . ;nobc, where GL is defined as

GL
i ¼

Xnpde

j¼1

EL
i;j

@Uj

@t
þ

Xncode

j¼1

HL
i;j
_V j, ð11Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

Xnpde

j¼1

EL
i;j

@Uj

@t
þ

Xncode

j¼1

HL
i;j
_V j þ SLi , ð12Þ

i.e., all terms in equation (7), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of ires.

11: ires – Integer * Input/Output

On entry: the form of GL
i (or GR

i) that must be returned in the array res. If ires ¼ �1,
then equation (11) above must be used. If ires ¼ 1, then equation (12) above must be
used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_keller_ode (d03pkc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

d03pkc NAG C Library Manual

d03pkc.6 [NP3660/8]

12: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_keller_ode
(d03pkc) these pointers may be allocated memory by the user and initialized with
various quantities for use by bndary when called from
nag_pde_parab_1d_keller_ode (d03pkc).

6: u½neqn� – double Input/Output

On entry: the initial values of the dependent variables defined as follows:

u½npde� j� 1ð Þ þ i� 1� contain Ui xj; t0
� �

, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts and
u½npts� npdeþ i� 1� contain V i t0ð Þ, for i ¼ 1; 2; . . . ; ncode.

On exit: the computed solution Ui xj; t
� �

, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;npts, and Vk tð Þ, for
k ¼ 1; 2; . . . ; ncode, evaluated at t ¼ ts.

7: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

8: x½npts� – const double Input

On entry: the mesh points in the space direction. x½0� must specify the left-hand boundary, a, and
x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

9: nleft – Integer Input

On entry: the number na of boundary conditions at the left-hand mesh point x½0�.
Constraint: 0 � nleft � npde.

10: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

11: odedef – function, supplied by the user External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (4). If you
wish to compute the solution of a system of PDEs only (i.e., ncode ¼ 0), odedef must be the
dummy function d03pek. (d03pek is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double f[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.7

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

4: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

5: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _V i tð Þ, for i ¼ 1; 2; . . . ; ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi½nxi� – const double Input

On entry: xi½i� 1� contains the ODE/PDE coupling points, �i, for i ¼ 1; 2; . . . ; nxi.

8: ucp½npde� nxi� – const double Input

On entry: ucp½npde� jþ i� contains the value of Ui x; tð Þ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

On entry: ucpx½npde� jþ i� contains the value of
@Ui x; tð Þ

@x
at the coupling point x ¼ �j,

for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

10: ucpt½npde� nxi� – const double Input

On entry: ucpt½npde� jþ i� contains the value of
@Ui

@t
at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

11: f½ncode� – double Output

On exit: f ½i� 1� must contain the ith component of f , for i ¼ 1; 2; . . . ; ncode, where f is
defined as

F ¼ �B _V � CU �
t , ð13Þ

i.e., only terms depending explicitly on time derivatives, or

F ¼ A� B _V � CU �
t , ð14Þ

i.e., all terms in equation (4). The definition of f is determined by the input value of ires.

12: ires – Integer * Input/Output

On entry: the form of f that must be returned in the array f. If ires ¼ �1, then equation
(13) above must be used. If ires ¼ 1, then equation (14) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions, as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

d03pkc NAG C Library Manual

d03pkc.8 [NP3660/8]

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_keller_ode (d03pkc) returns to the calling
function with the error indicator set to fail.code ¼ NE_FAILED_DERIV.

13: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_keller_ode
(d03pkc) these pointers may be allocated memory by the user and initialized with
various quantities for use by odedef when called from
nag_pde_parab_1d_keller_ode (d03pkc).

12: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

13: xi½dim� – const double Input

Note: the dimension, dim, of the array xi must be at least max 1; nxið Þ.

On entry: xi½i� 1�, for i ¼ 1; 2; . . . ;nxi, must be set to the ODE/PDE coupling points, �i.

Constraint: x½0� � xi½0� < xi½1� < � � � < xi½nxi� 1� � x½npts� 1�.

14: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

15: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol ¼ 1 or 2;
neqn when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0 for all relevant i.

16: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least

1 when itol ¼ 1 or 3;
neqn when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0 for all relevant i.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.9

17: itol – Integer Input

On entry: a value to indicate the form of the local error test. itol indicates to
nag_pde_parab_1d_keller_ode (d03pkc) whether to interpret either or both of rtol or atol as a
vector or scalar. The error test to be satisfied is ei=wik k < 1:0, where wi is defined as follows:

itol rtol atol wi

1 scalar scalar rtol½0� � u½i� 1�j j þ atol½0�
2 scalar vector rtol½0� � u½i� 1�j j þ atol½i� 1�
3 vector scalar rtol½i� 1� � u½i� 1�j j þ atol½0�
4 vector vector rtol½i� 1� � u½i� 1�j j þ atol½i� 1�

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, u½i� 1�, for i ¼ 1; 2; . . . ; neqn.

The choice of norm used is defined by the argument norm, see below.

Constraint: 1 � itol � 4.

18: norm – Nag_NormType Input

On entry: the type of norm to be used. Two options are available:

norm ¼ Nag_MaxNorm

Maximum norm.

norm ¼ Nag_TwoNorm

Averaged L2 norm.

If unorm denotes the norm of the vector u of length neqn, then for the averaged L2 norm

unorm ¼

ffi
1

neqn

Xneqn

i¼1

u½i� 1�=wið Þ2
vuut ,

while for the maximum norm

unorm ¼ max
i

u½i� 1�=wij j.

See the description of the itol argument for the formulation of the weight vector w.

Constraint: norm ¼ Nag_MaxNorm or Nag_TwoNorm.

19: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required.

laopt ¼ Nag_LinAlgFull

Full matrix methods to be used.

laopt ¼ Nag_LinAlgBand

Banded matrix methods to be used.

laopt ¼ Nag_LinAlgSparse

Sparse matrix methods to be used.

Constraint: laopt ¼ Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode ¼ 0).

20: algopt½30� – const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt½0� should be set to 0:0. Default values will also be used for any

d03pkc NAG C Library Manual

d03pkc.10 [NP3660/8]

other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt½0�
Selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used. The default value is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i�, for i ¼ 1; 2; 3 are not used.

algopt½1�
Specifies the maximum order of the BDF integration formula to be used. algopt½1� may be
1:0, 2:0, 3:0, 4:0 or 5:0. The default value is algopt½1� ¼ 5:0.

algopt½2�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt½2� ¼ 1:0.

algopt½3�
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ; npde for some i or when there is no _V i tð Þ dependence in the
coupled ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0,
then the Petzold test is not used. The default value is algopt½3� ¼ 1:0.

If algopt½0� ¼ 1:0, then algopt½i�, for i ¼ 4; 5; 6 are not used.

algopt½4�
Specifies the value of Theta to be used in the Theta integration method.
0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and if
algopt½5� ¼ 2:0, a functional iteration method is used. The default value is algopt½5� ¼ 1:0.

algopt½6�
Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt½6� ¼ 1:0,
then switching is allowed and if algopt½6� ¼ 2:0, then switching is not allowed. The default
value is algopt½6� ¼ 1:0.

algopt½10�
Specifies a point in the time direction, tcrit, beyond which integration must not be attempted.
The use of tcrit is described under the argument itask. If algopt½0� 6¼ 0:0, a value of 0:0 for
algopt½10�, say, should be specified even if itask subsequently specifies that tcrit will not be
used.

algopt½11�
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt½11� should be set to 0:0.

algopt½12�
Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt½12� should be set to 0:0.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.11

algopt½13�
Specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then the
initial step size is calculated internally.

algopt½14�
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22�
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If algopt½22� ¼ 1:0, a modified Newton iteration is
used and if algopt½22� ¼ 2:0, functional iteration is used. The default value is
algopt½22� ¼ 1:0.

algopt½28� and algopt½29� are used only for the sparse matrix algebra option, i.e.,
laopt ¼ Nag_LinAlgSparse.

algopt½28�
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt½28� lies outside this range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular then increasing algopt½28� towards 1:0 may help, but at the cost of increased fill-in.
The default value is algopt½28� ¼ 0:1.

algopt½29�
Used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28�) below which an internal error is invoked. algopt½29� must be greater than
zero, otherwise the default value is used. If algopt½29� is greater than 1:0 no check is made
on the pivot size, and this may be a necessary option if the Jacobian is found to be
numerically singular (see algopt½28�). The default value is algopt½29� ¼ 0:0001.

21: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

22: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_keller_ode (d03pkc) is called. Its size depends on the type of matrix algebra
selected:

if laopt ¼ Nag_LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgBand, lrsave � 2�mlþmuþ 2ð Þ � neqnþ nwkresþ lenode;
if laopt ¼ Nag_LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkresþ lenode;

where

ml and mu are the lower and upper half bandwidths given by npdeþ nleft� 1, and
mu ¼ 2� npde� nleft� 1, for problems involving PDEs only, and
ml ¼ mu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼ npde� 2� nptsþ 6� nxiþ 3� npdeþ 26ð Þ þ nxiþ ncodeþ 7� nptsþ 2,
when ncode > 0 and nxi > 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ ncodeþ 7� nptsþ 3, when ncode > 0
and nxi ¼ 0, and
nwkres ¼ npde� 2� nptsþ 3� npdeþ 32ð Þ þ 7� nptsþ 4, when ncode ¼ 0.

lenode ¼ 6þ int algopt½1�ð Þð Þ � neqnþ 50, when the BDF method is used, and
lenode ¼ 9� neqnþ 50, when the Theta method is used.

d03pkc NAG C Library Manual

d03pkc.12 [NP3660/8]

Note: when using the sparse option, the value of lrsave may be too small when supplied to the
integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code ¼ NE_INT_2.

23: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular the following components of the array isave
concern the efficiency of the integration:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the ODE method last used in the time integration.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

24: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_keller_ode (d03pkc) is called. Its size depends on the type of matrix algebra
selected:

if laopt ¼ Nag_LinAlgFull, lisave � 24;
if laopt ¼ Nag_LinAlgBand, lisave � neqnþ 24;
if laopt ¼ Nag_LinAlgSparse, lisave � 25� neqnþ 24.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code ¼ NE_INT_2.

25: itask – Integer Input

On entry: the task to be performed by the ODE integrator.

itask ¼ 1

Normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2

Take one step in the time direction and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

itask ¼ 4

Normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit, where
tcrit is described under the argument algopt.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.13

itask ¼ 5

Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument algopt.

Constraint: 1 � itask � 5.

26: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_keller_ode (d03pkc) and
the underlying ODE solver as follows:

itrace � �1

No output is generated.

itrace ¼ 0

Only warning messages from the PDE solver are printed .

itrace ¼ 1

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

itrace ¼ 2

Output from the underlying ODE solver is similar to that produced when itrace ¼ 1, except
that the advisory messages are given in greater detail.

itrace � 3

Output from the underlying ODE solver is similar to that produced when itrace ¼ 2, except
that the advisory messages are given in greater detail.

27: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

28: ind – Integer * Input/Output

On entry: must be set to 0 or 1.

ind ¼ 0

Starts or restarts the integration in time.

ind ¼ 1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_keller_ode
(d03pkc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

29: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

30: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

d03pkc NAG C Library Manual

d03pkc.14 [NP3660/8]

31: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts ¼ valueh i.

NE_INT

On entry, ind is not equal to 0 or 1: ind ¼ valueh i.
ires set to an invalid value in call to pdedef, bndary, or odedef.

On entry, itask is not equal to 1, 2, 3, 4 or 5: itask ¼ valueh i.
On entry, itol is not equal to 1, 2, 3, or 4: itol ¼ valueh i.
On entry, ncode ¼ valueh i.
Constraint: ncode � 0.

On entry, nleft ¼ valueh i.
Constraint: nleft � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

On entry, nxi ¼ valueh i.
Constraint: nxi � 0.

NE_INT_2

On entry, corresponding elements atol½i� 1� and rtol½j� 1� are both zero. i ¼ valueh i, j ¼ valueh i.
On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, ncode ¼ valueh i, nxi ¼ valueh i.
Constraint: if ncode ¼ 0, nxi ¼ 0.

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.15

On entry, ncode ¼ valueh i, nxi ¼ valueh i.
Constraint: if ncode > 0, nxi � 0.

On entry, nleft ¼ valueh i, npde ¼ valueh i.
Constraint: 0 � nleft � npde.

On entry, nleft > npde: nleft ¼ valueh i, npde ¼ valueh i.
When using the sparse option lisave or lrsave is too small: lisave ¼ valueh i, lrsave ¼ valueh i.

NE_INT_4

On entry, npde ¼ valueh i, npts ¼ valueh i, ncode ¼ valueh i, neqn ¼ valueh i.
Constraint: neqn ¼ npde� nptsþ ncode.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ valueh i.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x badly ordered: i ¼ valueh i, x½i� 1� ¼ valueh i, j ¼ valueh i,
x½j� 1� ¼ valueh i.
On entry, xi½i� � xi½i� 1�: i ¼ valueh i, xi½i� ¼ valueh i, xi½i� 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL_2

On entry, at least one point in xi lies outside x½0�; x½npts� 1�½ �: x½0� ¼ valueh i,
x½npts� 1� ¼ valueh i.
On entry, tout� ts is too small: tout ¼ valueh i, ts ¼ valueh i.
On entry, tout � ts: tout ¼ valueh i, ts ¼ valueh i.

NE_REAL_ARRAY

On entry, atol½i� 1� < 0:0: i ¼ valueh i, atol½i� 1� ¼ valueh i.
On entry, rtol½i� 1� < 0:0: i ¼ valueh i, rtol½i� 1� ¼ valueh i.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts ¼ valueh i.

NE_ZERO_WTS

Zero error weights encountered during time integration.

d03pkc NAG C Library Manual

d03pkc.16 [NP3660/8]

7 Accuracy

nag_pde_parab_1d_keller_ode (d03pkc) controls the accuracy of the integration in the time direction but
not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the accuracy arguments, atol and rtol.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example in Section 9 below). In general, a second-order
problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-
difference scheme (see nag_pde_parab_1d_fd (d03pcc) or nag_pde_parab_1d_fd_ode (d03phc) for
example), but at the expense of increased CPU time due to the larger number of function evaluations
required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be
unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation
Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This
type of problem requires a discretization scheme with upwind weighting (nag_pde_parab_1d_cd_ode
(d03plc) for example), or the addition of a second-order artificial dissipation term.

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to neqn.

9 Example

This problem provides a simple coupled system of two PDEs and one ODE.

V 1ð Þ2@U1

@t
� xV 1

_V 1U2 �
@U 2

@x
¼ 0,

U 2 �
@U1

@x
¼ 0,

_V 1 � V 1U 1 � U 2 � 1� t ¼ 0,

for t 2 10�4; 0:1� 2i
� �

, for i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �. The left boundary condition at x ¼ 0 is

U 2 ¼ �V 1 exp t,

and the right boundary condition at x ¼ 1 is

U 2 ¼ �V 1
_V 1.

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V 1 ¼ t;U1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0 and U 2 x; tð Þ ¼ �t exp t 1� xð Þf g, x 2 0; 1½ �,
and the coupling point is at �1 ¼ 1:0.

This problem is exactly the same as the nag_pde_parab_1d_fd_ode (d03phc) example problem, but
reduced to first-order by the introduction of a second PDE variable (as mentioned in Section 8).

9.1 Program Text

/* nag_pde_parab_1d_keller_ode (d03pkc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

#include <stdio.h>

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.17

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
static void pdedef(Integer, double, double, const double[], const double[],

const double[], Integer, const double[],
const double[], double[], Integer *, Nag_Comm *);

static void bndary(Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], Integer ncode,
const double v[], const double vdot[], double res[],
Integer *ires, Nag_Comm *comm);

static void odedef(Integer, double, Integer, const double[], const double[],
Integer, const double[], const double[],
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void uvinit(Integer npde, Integer npts, double *x, double *u,
Integer ncode, Integer neqn, double ts);

static void exact(double, Integer, Integer, double *, double *);

#define UCP(I,J) ucp[npde*((J)-1)+(I)-1]

int main(void)
{

const Integer npde=2, npts=21, ncode=1, nxi=1, nleft=1,
neqn=npde*npts+ncode, lisave=24,
nwkres=npde*(npts+6*nxi+3*npde+15)+ncode+nxi+7*npts+2,
lenode=11*neqn+50, lrsave=neqn*neqn+neqn+nwkres+lenode;

double tout, ts;
Integer exit_status, i, ind, it, itask, itol, itrace;
Nag_Boolean theta;
double *algopt=0, *atol=0, *exy=0, *rsave=0, *rtol=0,

*u=0, *x=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(exy = NAG_ALLOC(neqn, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(neqn, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(nxi, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("nag_pde_parab_1d_keller_ode (d03pkc) Example Program Results\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;
itol = 1;
atol[0] = 1e-4;
rtol[0] = atol[0];

Vprintf(" Accuracy requirement =%10.3e", atol[0]);
Vprintf(" Number of points = %3ld\n\n", npts);

/* Set spatial-mesh points */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

d03pkc NAG C Library Manual

d03pkc.18 [NP3660/8]

xi[0] = 1.0;
ind = 0;
itask = 1;

/* Set THETA to TRUE if the Theta integrator is required */

theta = Nag_FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;
if (theta)

{
algopt[0] = 2.0;

} else {
algopt[0] = 0.0;

}
algopt[0] = 1.0;
algopt[12] = 0.005;

/* Loop over output value of t */

ts = 1e-4;
tout = 0.0;
Vprintf(" x %9.3f%9.3f%9.3f%9.3f%9.3f\n\n",

x[0], x[4], x[8], x[12], x[20]);

uvinit(npde, npts, x, u, ncode, neqn, ts);

for (it = 0; it < 5; ++it)
{

tout = 0.1*pow(2.0, (it+1.0));
/* nag_pde_parab_1d_keller_ode (d03pkc).
* General system of first-order PDEs, coupled DAEs, method
* of lines, Keller box discretisation, one space variable
*/

nag_pde_parab_1d_keller_ode(npde, &ts, tout, pdedef, bndary, u, npts, x,
nleft, ncode, odedef, nxi, xi, neqn, rtol,
atol, itol, Nag_TwoNorm, Nag_LinAlgFull,
algopt, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_keller_ode (d03pkc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Check against the exact solution */

exact(tout, neqn, npts, x, exy);

Vprintf(" t = %6.3f\n", ts);
Vprintf(" App. sol. %7.3f%9.3f%9.3f%9.3f%9.3f",

u[0], u[8], u[16], u[24], u[40]);
Vprintf(" ODE sol. =%8.3f\n", u[42]);
Vprintf(" Exact sol. %7.3f%9.3f%9.3f%9.3f%9.3f",

exy[0], exy[8], exy[16], exy[24], exy[40]);
Vprintf(" ODE sol. =%8.3f\n\n", ts);

}
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (exy) NAG_FREE(exy);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.19

if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void uvinit(Integer npde, Integer npts, double *x,

double *u, Integer ncode, Integer neqn,
double ts)

{
Integer i, k;

/* Routine for PDE initial values */

k = 0;
for (i = 0; i < npts; ++i)

{
u[k] = exp(ts*(1.0-x[i])) - 1.0;
u[k+1] = -ts*exp(ts*(1.0-x[i]));
k += 2;

}
u[neqn-1] = ts;

return;
}
static void odedef(Integer npde, double t, Integer ncode, const double v[],

const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[],
const double ucpt[], double f[], Integer *ires,
Nag_Comm *comm)

{
if (*ires == -1) {

f[0] = vdot[0];
} else {

f[0] = vdot[0] - v[0]*UCP(1, 1) - UCP(2, 1) - 1.0 - t;
}
return;

}
static void pdedef(Integer npde, double t, double x, const double u[],

const double ut[], const double ux[], Integer ncode,
const double v[], const double vdot[], double res[],
Integer *ires, Nag_Comm *comm)

{
if (*ires == -1)

{
res[0] = v[0]*v[0]*ut[0] - x*u[1]*v[0]*vdot[0];
res[1] = 0.0;

} else {
res[0] = v[0]*v[0]*ut[0] - x*u[1]*v[0]*vdot[0] - ux[1];
res[1] = u[1] - ux[0];

}
return;

}
static void bndary(Integer npde, double t, Integer ibnd,

Integer nobc, const double u[], const double ut[],
Integer ncode, const double v[],
const double vdot[], double res[], Integer *ires,
Nag_Comm *comm)

{
if (ibnd == 0) {

if (*ires == -1) {
res[0] = 0.0;

} else {
res[0] = u[1] + v[0]*exp(t);

}
} else {

if (*ires == -1) {
res[0] = v[0]*vdot[0];

} else {
res[0] = u[1] + v[0]*vdot[0];

d03pkc NAG C Library Manual

d03pkc.20 [NP3660/8]

}
}
return;

}
static void exact(double time, Integer neqn, Integer npts,

double *x, double *u)
{

/* Exact solution (for comparison purposes) */

Integer i, k;

k = 0;
for (i = 0; i < npts; ++i) {

u[k] = exp(time*(1.0-x[i])) - 1.0;
k += 2;

}
return;

}

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_keller_ode (d03pkc) Example Program Results

Accuracy requirement = 1.000e-04 Number of points = 21

x 0.000 0.200 0.400 0.600 1.000

t = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.000 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

t = 0.400
App. sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

t = 0.800
App. sol. 1.226 0.896 0.616 0.377 -0.000 ODE sol. = 0.800
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

t = 1.600
App. sol. 3.952 2.595 1.610 0.895 -0.001 ODE sol. = 1.600
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

t = 3.200
App. sol. 23.522 11.918 5.807 2.588 -0.004 ODE sol. = 3.197
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 642
Number of function evaluations = 3022
Number of Jacobian evaluations = 39
Number of iterations = 1328

d03 – Partial Differential Equations d03pkc

[NP3660/8] d03pkc.21 (last)

	d03pkc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ut
	ux
	ncode
	v
	vdot
	res
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	ibnd
	nobc
	u
	ut
	ncode
	v
	vdot
	res
	ires
	comm
	user
	iuser
	p

	u
	npts
	x
	nleft
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	ucpt
	f
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL_2
	NE_REAL_ARRAY
	NE_SING_JAC
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

